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Abstract

Understanding how different debriefing formats impact learner’s cognitive load is crucial
for designing effective post-simulation reflection activities. This paper examines cogni-
tive load after post-simulation debriefings facilitated either by a human instructor or a
generative Al Chatbot. In a controlled study with N = 45 educational science students,
23 participants engaged in a lecturer-facilitated debriefing, while 22 completed a chatbot-
guided session. Cognitive load was assessed across intrinsic, extraneous, and germane
dimensions. Results revealed no statistically significant differences between the two de-
briefing methods. Future research should examine Al-led debriefings with larger samples
and employ complementary measures of cognitive load to provide a more comprehen-
sive understanding.
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1. Introduction

Research on simulation-based learning suggests that structured debriefing sessions
support effective learning with simulations by facilitating guided reflection on learners’
actions and experience (Shinnick et al., 2011; Ryoo & Ha, 2015; Crookall, 2023). Even
the most sophisticated and immersive simulations reach their full educational potential
only when participants are provided with guided opportunities to critically analyze their
decisions and actions (Crookall, 2023). Debriefing serves as this essential phase by helping
learners interpret their experiences, consider alternative strategies, and connect their learn-
ing to professional practice (Kriz & Nobauer, 2015; Luctkar-Flude et al., 2021). Despite its
importance, debriefing—particularly within Virtual Reality (VR) and similar simulation
environments—remains a resource-intensive practice, often limited by the availability of
qualified facilitators INACSL Standards Committee, 2016; Metcalfe et al., 2007). Research
on simulation debriefing is expanding but remains largely fragmented across domains,
with a predominant focus on healthcare contexts (Cheng et al., 2020; Favolise, 2024; Garden
et al., 2015). As such, there is an urgent need to extend empirical and conceptual work
into broader educational settings. Two primary debriefing strategies are prominent in the
literature: facilitator-led and self-guided approaches. These differ in instructional design,
group size, technological support, and instructor (Dufrene & Young, 2014; Luctkar-Flude
et al., 2021). Although facilitator-led debriefing is endorsed by professional bodies such
as the International Nursing Association for Clinical Simulation and Learning (INACSL)
(INACSL Standards Committee, 2016), empirical evidence offering unequivocal support for
its superiority remains limited (Dufrene & Young, 2014). This gap highlights the necessity
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for systematic comparison across debriefing modalities. Recent advances in generative
artificial intelligence (Al), particularly with large language model (LLM)-based chatbots,
present promising opportunities to augment debriefing at scale. These Al-driven conversa-
tional agents may simulate interactive debriefing dialogs analogous to human facilitators
potentially alleviating resource constraints in simulation-based education (Evangelou et al.,
2025, 2026).

Alongside its role in supporting effective knowledge acquisition, debriefing also
raises the question of whether and to what extent post-simulation reflection may affect
learner’s cognitive load. Cognitive Load Theory (CLT) posits that the efficiency of learning
largely depends on the balance between the cognitive demands imposed by a task and the
limited capacity of working memory (Sweller, 1988). When instructional designs minimize
extraneous load and foster germane processing, learners are more likely to construct and
retain meaningful knowledge structures (Sweller et al., 2019).

The aim of this study is to compare cognitive load resulting from Al-led versus
moderator-led post-simulation debriefings among students in a VR simulation context to
determine whether chatbot facilitation affects intrinsic, extraneous, and germane cognitive
load differently.

2. Theoretical Background
2.1. Debriefing

As highlighted in the introduction, debriefing is a fundamental component of
simulation-based learning, essential for supporting reflection that deepens and consolidates
learners’ knowledge (Dreifuerst, 2015; Fey & Jenkins, 2015). It creates space for learners to
critically review their actions, consider alternative approaches, and relate their simulated
experience to theoretical concepts and professional practice (Sawyer et al., 2016). According
to Kolb’s (2014) experiential learning theory, this reflective process is key to transforming
concrete experience into abstract understanding. Effective debriefing encourages learners
to identify emotional reactions, assess their decisions, and derive transferable insights
(Rudolph et al., 2006), thereby fostering both cognition growth and professional confidence
(Cantrell, 2008).

Qualitative studies reveal that a complex situation alone is insufficient for competence
development; instructional conditions such as well-structured debriefing sessions are es-
sential for transferring learning to practice (Hense & Kriz, 2008; Kriz et al., 2007). Empirical
research on debriefing often focuses on comparing methods or exploring learner’s experi-
ences (Dufrene & Young, 2014). For example, learners who participate in post-simulation
debriefing demonstrate greater knowledge gains than those who do not (Shinnick et al.,
2011). Debriefing may be structured and supported through various approaches, including
instructor guidance, peer feedback (Boet et al., 2011), and the use of supporting tools such
as video-assisted sessions to facilitate reflection (Chronister & Brown, 2012; Grant et al.,
2010). Together, these studies underline structured debriefing’s critical role in enhancing
knowledge acquisition and professional competence.

Debriefing formats range from facilitator-led to self-guided approaches. Facilitated
debriefings involve trained moderators guiding reflection, providing feedback, and helping
learners interpret key simulation events (Cheng et al., 2017; Sawyer et al., 2016). This
approach is widely seen as best practice because it tailors discussions to learner needs,
resolves misunderstandings, and models reflection skills (INACSL Standards Committee,
2016; Fey & Jenkins, 2015). Established frameworks like Debriefing with Good Judgment
(Rudolph et al., 2006) and PEARLS (Eppich & Cheng, 2015) emphasize psychological safety,
respect, and learner-centered dialog as foundations for effective debriefing.
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However, moderated debriefing demands significant time and skilled facilitators,
limiting scalability especially in large educational context (Cheng et al., 2017). Self-guided
formats, which provide prompts or structured guides for independent reflection, have
emerged as scalable alternatives (Boet et al., 2014; Tosterud et al., 2013). While promot-
ing autonomy, their effectiveness is debated. Novices, in particular, may struggle with
unguided reflection due to limited metacognitive skills (Dufrene & Young, 2014). Still,
with adequate scaffolding through prompts or digital support, self-guided debriefing can
complement or substitute facilitated sessions (Evangelou et al., 2026; Koole et al., 2012;
Luctkar-Flude et al., 2021).

2.2. Cognitive Load

Cognitive Load Theory (CLT) explains how the limited capacity of working memory
constrains learning processes and learning outcomes. Learning is most effective when
cognitive resources are not overloaded, allowing learners to allocate cognitive effort to
processes that foster understanding and knowledge construction (Sweller, 1988; Sweller
et al., 2019).

Traditionally, CLT distinguishes between three types of cognitive load (Chandler &
Sweller, 1991; Paas et al., 2003). Intrinsic cognitive load refers to the inherent complexity
of the learning material, which is determined by task characteristics and learners’ prior
knowledge. Extraneous cognitive load arises from suboptimal instructional design, such as
unclear instructions or irrelevant information, and consumes working-memory resources
without contributing to learning. Germane cognitive load reflects the cognitive effort
learners invest in schema construction and meaningful processing.

In later theoretical developments, the conceptual status of germane cognitive load
has been critically discussed. In particular, it has been argued that germane load does
not constitute a separate type of cognitive load, but rather reflects the effective use of
working-memory resources devoted to intrinsic load (Sweller, 2010, 2011; Kalyuga, 2011).
Despite this ongoing debate, the three-component framework continues to be widely used
in empirical research, especially in studies employing established self-report instruments
that operationalize intrinsic, extraneous, and germane cognitive load as distinct dimensions
(Paas et al., 2003; Leppink et al., 2013; Klepsch et al., 2017). Accordingly, the present study
adopts this operationalization to enable a differentiated examination of learners’ cognitive
load during post-simulation debriefing.

From an instructional perspective, effective learning environments should aim to
manage intrinsic demands, minimize extraneous load, and support cognitive processes
related to schema construction (Chandler & Sweller, 1991). In the context of this study,
the focus lies on post-simulation debriefings as structured reflection activities. Specifically,
this study examines how different facilitation formats influence learners’ cognitive load in
order to derive implications for the design of instructional debriefing practices.

2.3. Debriefing and Cognitive Load

Research investigating the relationship between debriefing and learners’ perceived
cognitive load remains limited. Existing studies predominantly utilize a pre—post design,
assessing cognitive load immediately after the VR experience and again following debrief-
ing (Fraser & McLaughlin, 2019; Miller et al., 2025). These studies consistently report that
total cognitive load measured post-scenario is moderately high and increases significantly
after debriefing. Moreover, elevated cognitive load following debriefing has been linked to
reduced tranquility (Fraser & McLaughlin, 2019). The choice of cognitive load measurement
instrument appears to critically influence findings. Miller et al. (2025), compared the Paas
scale (Paas et al., 2003) and the CLAS-Sim instrument (Greer et al., 2023) in a study where
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participants completed ten VR scenarios, each followed by a 15 min debriefing. Their
results indicate that germane cognitive load reported via CLAS-Sim (Greer et al., 2023) after
debriefing was higher compared to the Paas scale (Paas et al., 2003). They further argue that
germane cognitive load should primarily be measured post-debriefing to capture its full
manifestation. In contrast, intrinsic and extraneous cognitive load measurements showed
no differences between instruments, both pre and post debriefing, likely reflecting the
stable task complexity inherent in the simulation. A study comparing cognitive load across
debriefing methods indicates that there are no significant differences between peer-led and
instructor-led debriefings (Na & Roh, 2021). Furthermore, the authors also reported that
total cognitive load was higher after debriefing compared to before. Similarly, a separate
study examining video-assisted versus non-video-assisted debriefings found no significant
differences in cognitive load between approaches either (Braund et al., 2025).

Chatbots as Debriefers

Conversational agents have recently been used in educational contexts to support
learning, feedback and reflection (Zawacki-Richter et al., 2019; Kasneci et al., 2023). Ad-
vances in natural language processing and generative Al enable adaptive, context-aware
dialogs resembling human tutoring (Winkler & Soellner, 2018). Their applications include
language learning, tutoring, assessment, and emotional support (Holmes et al., 2019; Kerlyl
et al., 2007). In simulation-based learning, chatbots offer scalable alternatives to human
facilitators, especially for post-simulation debriefings (Kumar et al., 2025; Zhu et al., 2025).
They guide structured reflection, pose questions, and provide empathetic feedback (Ortega-
Ochoa et al., 2024). Evangelou et al. (2025) demonstrated that generative chatbots can
effectively maintain their role as debriefers even in complex conversations, with learners
using the chatbot to reflect and occasionally take dialog control.

Recent generative Al models produce coherent, contextually relevant responses,
supporting metacognitive tasks like reflection and self-assessment (Kasneci et al., 2023;
Zawacki-Richter et al., 2019). Early evidence shows that learners find Al-based debriefings
engaging and helpful when pedagogically designed with learner-centered dialog (Nghi &
Anh, 2024; Wang & Akhter, 2025). Limitations remain, including challenges recognizing
emotional cues and handling ambiguous responses (Liang & Hwang, 2023).

2.4. Research Questions and Hypotheses

The increasing importance of Al in education (Ifenthaler et al., 2024), combined with
challenges such as limited human resources in higher education (McDonald, 2013), high-
lights the potential of Al-facilitated reflective conversations, including debriefings. How-
ever, there are concerns that Al-driven facilitation may impose additional cognitive load
that could overwhelm learners (Memarian & Doleck, 2023; Klar, 2025). Importantly, the
majority of existing research on debriefing is concentrated within the healthcare domain,
with relatively few studies directly comparing cognitive load across different debriefing
methods (Na & Roh, 2021). This contextual gap underscores the significance of the present
study. Accordingly, we investigate whether Al-led post-simulation debriefings produce
cognitive load profiles comparable to those of moderator-led debriefings recommended by
the INACSL Standards Committee (2016). From this, the following hypotheses are derived:

1. Perceived intrinsic cognitive load will be higher after a chatbot-led debriefing com-
pared to a moderator-led debriefing.

2. Perceived extraneous cognitive load will be higher after a chatbot-led debriefing
compared to a moderator-led debriefing.

3.  Perceived germane cognitive load will be lower after a chatbot-led debriefing com-
pared to a moderator-led debriefing.
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3. Methods

The study is part of the research project VR-Hybrid which investigates the potential
of VR for training counseling techniques in higher education. The focus of the present
analysis is on learners’ intrinsic, extraneous, and germane cognitive load following a post-
simulation debriefing session. The VR training took place in January 2025 in a laboratory
setting, using a Meta Quest 3 and the VR platform Engage. The training was embedded
within a university seminar in educational sciences, in which students were introduced to
counseling techniques and strategies.

3.1. Participants

The study involved undergraduate students enrolled in education science programs
at a large German university. Initially, N = 46 students participated, but one was excluded
after withdrawing due to motion sickness during the intervention, resulting in a final
sample of N = 45. The majority of the participants were women (n = 39, 86.7%), with an
average age of 24.5 years (SD = 8.7). Recruitment took place through announcements in
relevant courses, and participation was voluntary in exchange for course credit. Written
informed consent was obtained from all students, and the study was approved in line with
university’s ethics procedures. Students were informed that they could withdraw at any
time without consequence. Before starting the first questionnaire, each participant created
a unique four-digit code, which enabled pseudonymized matching of responses across
time points.

3.2. Procedure

Participants scheduled individual appointments for the VR training as part of one-on-
one sessions. At the beginning of each session, they completed a pre-test questionnaire
collecting demographic information, prior VR experience, empathy, self-efficacy, and
counseling competence. Participants were then randomly assigned to one of two avatar
conditions (customized vs. generic). They subsequently engaged in a VR-based counseling
scenario in which they interacted with a standardized client (“Lena”) in a virtual counseling
room. The role of the client was enacted by trained research assistants, who were located in
separate rooms and did not meet the participants in person.

Following the VR training, participants completed a second questionnaire measuring
self-efficacy, counseling competence, presence, realism, embodiment, perspective-taking,
cognitive load related to the VR training, and engagement. Participants then took part
in a debriefing session that was either facilitated by a human moderator or conducted
using a generative chatbot. Both debriefing formats followed the Structured Debriefing
in Simulation-Based Education framework (Palaganas et al., 2016) and employed an iden-
tical three-phase structure consisting of a reaction phase, an understanding phase, and a
summary phase.

In the chatbot-guided debriefing condition, participants engaged in an individual
reflection process supported by an Al-based conversational agent. Prior to the interaction,
participants were provided with a printed instruction sheet outlining the purpose of the
debriefing and five core reflection prompts designed to structure the reflection process
(e.g., focusing on successful strategies, challenges encountered, and lessons learned). The
instruction sheet remained available throughout the debriefing. Participants then interacted
individually with the chatbot via a laptop placed next to the instruction sheet.

During the debriefing, the chatbot assumed the role of a facilitator and guided par-
ticipants through the three-phase reflection process. The debriefing began with a reaction
phase addressing participants’ immediate impressions and emotional responses, followed
by a phase focused on analyzing and interpreting the simulated interaction, and concluded
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with a summary phase aimed at consolidating key insights and considering their transfer
to future practice. Throughout the interaction, the chatbot prompted participants to elabo-
rate on their experiences, reflect on their actions, and articulate generalizable conclusions.
This procedure mirrored the structure used in the human-moderated debriefing condition
(Supplementary Materials).

The instructional role and dialog structure of the chatbot were developed iteratively
by the research team and refined through usability testing with trained student assistants
prior to the study. The chatbot was implemented using the Meta Llama 3.1 8B Instruct
language model, selected for its stable and consistent conversational behavior in instruc-
tional contexts. To balance response coherence and generative flexibility, both temperature
and nucleus sampling parameters were set to 0.5. A standardized system prompt defined
the chatbot’s role as a debriefing facilitator and ensured a consistent progression through
the reflection phases across participants. A qualitative analysis of the anonymized chat
transcripts as well as a quantitative examination of learners’ perceptions of the debriefing
process and its effectiveness are reported in related publications (Evangelou et al., 2025,
2026).

Finally, participants completed a post-debriefing questionnaire assessing self-efficacy
and counseling competence, as well as perceptions of the debriefing and cognitive load
specific to the debriefing phase.

3.3. Measurement Instruments

For the purposes of this paper, only the measurement instrument assessing cognitive
load is relevant. Cognitive load was measured using the questionnaire by Klepsch et al.
(2017), assessing intrinsic (ICL), extraneous (ECL), and germane cognitive load (GCL). The
instrument comprises two items for ICL (e.g., For this task, many things needed to be kept
in mind simultaneously), three items for GCL (e.g., I made an effort, not only to understand
several details, but to understand the overall context), and three items for ECL (e.g., The design
of this task was very inconvenient for learning). Responses were given on a 7-point Likert
scale ranging from 1 (strongly disagree) to 7 (strongly agree). For the present study, all items
were slightly adapted to explicitly refer to the debriefing phase. This adaptation was made
to ensure that participants clearly associated the items with the debriefing activity rather
than with the preceding simulation or the overall learning task, thereby reducing potential
ambiguity in item interpretation. For example, one of the ICL items was reworded as For
the debriefing, many things needed to be kept in mind simultaneously.

4. Results

This section reports on the quantitative results of our study. The prerequisites and
descriptive statistics are described first, followed by the representation of the results in
relation to the hypotheses. All analyses were conducted in R version 4.4.2. To evaluate the
hypotheses, multiple t-tests were performed.

4.1. Prerequisites

Prior to hypothesis testing, we assessed normality using the Shapiro-Wilk test (Table 1)
and homogeneity of variances using Levene’s test (Table 2). For ECL, the Shapiro-Wilk
test indicated a significant deviation from normality (W = 0.89, p < 0.001). In contrast,
the ICL and GCL did not deviate significantly from a normal distribution. Levene’s tests
showed no evidence of unequal variances between conditions for any of the three measures.
Consequently, the hypotheses were tested using Welch'’s t-test for ICL and GCL, and the
Mann-Whitney U test for ECL.
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Table 1. Shapiro-Wilk test—results.

Variable w p
ICL 0.96 0.091
ECL 0.89 <0.001
GCL 0.98 0.639

Table 2. Levene test—results.

Variable df 3 P
ICL 1.43 0.01 0.928
ECL 143 0.66 0.421
GCL 143 0.14 0.712

To account for possible confounding effects of debriefing length, we compared ses-
sion durations across conditions. The mean duration across all participants was 14.48 min
(8D =4.20). In the moderated debriefing (MB) condition, sessions averaged 14.6 min
(8D =2.92), while in the chatbot debriefing (SB) condition, the mean was 14.4 min
(SD =5.35). Levene’s test indicated a significant difference in variance between the two
groups F(1,43) = 6.59, p = 0.014, suggesting heterogeneity of variance. Therefore, Welch’s
t-test was applied, revealing no statistically significant difference in duration, #(32.18) = 0.12,
p =0.905.

4.2. Descriptive Statistics

Table 3 presents the descriptive statistics for all measures, along with Cronbach’s Alpha
values. While the Cronbach’s alpha value for ECL indicates good internal consistency, the
values for ICL and GCL can be described as poor (Cronbach, 1951).

Table 3. Descriptive statistics.

Variable Min Md Max M SD o
ICL 1 3 6.50 3.08 1.36 0.55
ECL 1 2 4.67 2.14 1.05 0.84
GCL 3 5 5.02 5.02 0.97 0.53

4.3. Hypotheses Testing

Considering the prerequisite analysis, Welch’s t-tests were conducted for ICL and
GCL, while a Mann—-Whitney U test was applied for hypothesis 2 due to the violation of
the normality assumption. The Welch’s t-test revealed no statistically significant difference
in ICL between the moderated and chatbot-led debriefings, #(43) = 0.59, p = 0.557. The
effect size was negligible, Cohen’s d = 0.18. A similar pattern emerged for GCL, where the
t-test also indicated no significant difference between conditions, #(43) = 1.40, p = 0.169,
with a small effect size, d = 0.42. The Mann—-Whitney U test for ECL likewise showed no
significant difference between debriefing methods, U = 204, p = 0.267, with a small effect
size, r = 0.17 (see Table 4).

Table 4. Results of the t-tests.

Variable Test dfiu p Effect Size
ICL t 1.43 0.557 d=0.18
ECL u 204 0.267 r=0.17
GCL t 1.43 0.169 d=042
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These results are illustrated in Figure 1, which presents the distribution of ICL, ECL
and GCL scores for both debriefing conditions using violin plots combined with boxplots
and individual data points. The figure clearly shows the similar distribution patterns
and the negligible differences in median and mean scores between the moderator-led and
chatbot-led conditions. Additionally, Figure 2 provides a profile plot of the mean scores
and 95% confidence intervals for the three cognitive load types across both conditions. This
visualization confirms the consistent pattern of low ECL, moderate ICL, and high GCL,
with overlapping confidence intervals indicating no statistically significant differences
between debriefing formats.

o c &

Cognitive Load Measure
Debriefing Condition [B8 Moderator-led debriefing [E5] Chathot-led debriefing

Figure 1. Cognitive load by debriefing methods.

L= o

Mean Score
W

o~ o~ o~
] &
o ‘6\”6
@:\@ el

XY
&
Cognitive Load Measure
Debriefing Condition - Moderator-led debriefing = Chatbot-led debriefing

Figure 2. Profile of cognitive load across debriefing methods.

5. Discussion

The present study aimed to investigate whether chatbot-led post-simulation debrief-
ings impose different levels of cognitive load compared to human-led debriefings. Based
on CLT (Sweller, 1988; Sweller et al., 2019), three hypotheses were formulated with re-
gard to ICL, ECL and GCL. The results, however, did not provide evidence for significant
differences between the two debriefing conditions.

Hypothesis 1 predicted that ICL would be higher in the chatbot-led debriefing condi-
tion. This assumption was grounded in the idea that learners might perceive interacting
with an Al system as more demanding, particularly when it comes to interpreting prompts
or adapting to non-human communication patterns. Contrary to this expectation, no
significant difference in ICL was observed. This finding suggests that participants did
not perceive the chatbot as imposing a higher inherent complexity compared to a human
moderator. A potential explanation may lie in the structured nature of the debriefing, which
provided clear guidance regardless of the facilitator. Beyond these structural factors, it is
theoretically conceivable that affective or social aspects of the interaction may also have
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played a role. For example, some learners might feel less social pressure when interacting
with a non-human facilitator, whereas others may experience the absence of human respon-
siveness as less supportive. As these aspects were not directly measured in the present
study, such interpretations remain speculative and should be addressed in future research.

Hypothesis 2 stated that ECL would be higher after chatbot-led debriefings. Such
an effect was expected because technical limitations, communication breakdowns, or less
adaptive responses could lead to additional processing demands. Again, the results did not
support this assumption. Participants reported comparable levels of ECL in both conditions.
This indicates that the chatbot was perceived as sufficiently coherent and supportive to
avoid adding unnecessary distractions or confusion. From a practical perspective, this
is a promising result, as it suggests that Al-driven debriefings do not inherently burden
learners with avoidable processing demands.

Hypothesis 3 proposed that GCL would be lower in chatbot-led debriefings. The
rationale was that human facilitators may be better able to foster reflective processing
and schema construction. Yet, the findings revealed no significant differences between
conditions. This suggests that the chatbot was able to support reflective engagement at
a level comparable to that of a human moderator. Although the effect size indicated a
small tendency towards lower GCL in the chatbot condition, the absence of significance
highlights the need for further investigations with larger samples.

Taken together, the findings challenge the assumption underlying the present study
that chatbot-led debriefings inherently increase learners’ cognitive load. The lack of signifi-
cant differences across all three dimensions of cognitive load can be interpreted positively:
chatbots did not raise ICL or ECL demands in a detrimental way, nor did they significantly
reduce germane processing. Thus, their use in higher education contexts can be reason-
ably justified, particularly in light of increasing demands for scalable teaching solutions
(McDonald, 2013). These results also align with a qualitative analysis of chatbot behavior
as a debriefer reported by Evangelou et al. (2025), further supporting the potential of
Al-driven facilitation to effectively support reflective learning processes without imposing
additional cognitive burden.

Despite these promising findings, several limitations must be acknowledged. First,
the measurement of cognitive load relied on retrospective self-report scales, which, while
widely used—primarily the Paas scale (Paas et al., 2003) in related studies (Braund et al.,,
2025; Fraser & McLaughlin, 2019; Miller et al., 2025)—have limitations in sensitivity and
may not fully capture the dynamic cognitive processes during debriefing. Future research
should consider alternative measurement instruments to more comprehensively assess
cognitive load. Additionally, Miller et al. (2025) highlight that intrinsic and extraneous
cognitive load constitute distinct constructs of GCL and emphasize the importance of
evaluating these dimensions separately within simulation-based learning contexts. The
relatively low reliability observed for the intrinsic and germane cognitive load subscales
further constrains the interpretability of the corresponding findings, which should therefore
be interpreted with caution. Second, the study was conducted with a relatively small and
homogeneous sample of educational science students, which limits the generalizability
of the findings to other disciplines, levels of expertise, or cultural contexts. Third, the
study focused exclusively on short-term perceptions of cognitive load. Long-term effects
on learning outcomes were not assessed.

Future research should therefore build on these limitations in several ways. Triangu-
lating self-reports with physiological or behavioral measures, such as eye-tracking (Braund
et al., 2025), EEG, or dual-task methods, could provide a more nuanced understanding of
cognitive demands. Moreover, larger and more diverse samples are needed to examine
whether chatbot-led debriefings function similarly across different learner groups and
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subject domains. Longitudinal studies could explore whether repeated exposure to chatbot-
facilitated debriefings influences learning outcomes, reflective depth, or learner acceptance
over time. Finally, qualitative approaches could shed light on learners’ subjective experi-
ences, particularly how they perceive the conversational quality and pedagogical value of
chatbot interactions.

6. Conclusions

The primary aim of this study was to investigate whether chatbot-led debriefings result
in higher ICL and ECL and lower GCL compared to moderator-led debriefings. Unlike
studies employing a pre—post design that assess changes in cognitive load before and after
debriefing (Miller et al., 2025), this study focused on directly comparing cognitive load levels
between the two debriefing methods without measuring within-subject changes over time.
The results provide initial evidence that chatbot-led debriefings do not significantly differ
from human-led debriefings in ICL, ECL and GCL. The absence of an increase in ICL and
ECL is encouraging, indicating that chatbots can be integrated into higher education settings
without imposing additional cognitive burden on learners. These findings support the
notion that Al-driven facilitation can serve as a practical complement to human instructors,
helping to address resource constraints while maintaining instructional effectiveness.
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