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Abstract: In this study, we report findings from the PCBuildAR project, in which students devel-
oped augmented reality (AR) artifacts following a guided design-based learning (DBL) approach. 
Sixty-two students participated in the study and were either in their first year to learn about com-
puter science or were more experienced computer science students. In terms of learning perfor-
mance, only the first-year students benefited from our guided DBL approach. In contrast, the expe-
rienced students were highly motivated to learn computer science not only immediately after the 
intervention, but also in the long term. For first-year students, this effect was only evident directly 
after the intervention. Overall, the guided DBL design proved to be effective for both motivation 
and learning, especially for younger students. For older learners, a better balance between guidance 
and autonomy is recommended. 

Keywords: augmented reality; design-based learning; computer science education; motivation; 
learner-generated content 
 

1. Introduction 
 In the digitally networked society, there is an urgent need to motivate and inspire 

students for science, technology, engineering, and mathematics (STEM) disciplines, as 
more and more professions related to these disciplines are emerging [1]. In principle, stu-
dents are expected to be interested in disciplines such as computer science or technology 
education, but this interest is diminishing as school-based STEM learning is perceived as 
difficult, complicated, and not relevant to life [2,3]. To address this problem, researchers 
are calling for practice-based and learner-centered instructional methods that provide op-
portunities for learners to discover content on their own and design their own learning 
products [4,5]. Design-based learning (DBL), in which learners plan and develop their 
own technologies or multimedia artifacts similar to an engineering development process, 
has become a promising approach in this regard [6,7]. Positive effects of DBL on motiva-
tional learning outcomes and learning achievement have mostly been shown in studies 
about digital game design [8,9] and video creation [10,11]. The relatively new technology 
of augmented reality (AR) was mainly researched through a learning from media per-
spective to determine if learning with AR is effective [12]. However, AR technology can 
also be looked at from a perspective of learning with media, in which learners create AR 
artifacts to solve educational problems [13]. For example, students in [14] facilitated their 
collaboration and communication skills through AR game design, and in [15] primary 
students developed digital literacy skills, e.g., information management and problem 
solving, through AR artifact creation. 

 However, researchers also point out that learning with DBL can be overwhelming 
and then may even hinder the acquisition of knowledge and skills [16]. In addition, re-
garding the motivational impact of DBL, contradictory results were reported in previous 
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studies for students of different educational levels. In [17] students, self-efficacy and situ-
ational interest decreased significantly over the period of a one-semester makerspace DBL 
approach. The decrease was stronger for higher-level students than for lower-level stu-
dents. More generally, the authors in [17] maintain that there is little empirical evidence 
for the motivational effects of DBL and thus more research is needed. Comparisons of 
DBL between students with different characteristics are also requested in [18], investigat-
ing both affective and cognitive learning outcomes. 

 The aim of this research is to address these calls for more research on DBL while also 
contributing to the research on AR as an educational technology. Therefore, we first pre-
sent a rigorously planned instructional design for DBL AR artefact creation in computer 
science education that aims to promote both learning performance and motivation to 
learn. Next, we share the results of our intervention study conducted in real classrooms 
as part of the PCBuildAR project. In this project, lower-level and higher-level students de-
signed and developed their own AR artifacts, which are now available online as open 
educational resources. The results of the guided AR DBL approach in terms of learning 
performance and motivation are discussed with reference to previous research, and an 
outlook on future studies and implications for practice are reported. 

2. Literature Review 
2.1. Design-Based Learning (DBL) 

Design-based learning (DBL) is a learner-centered teaching method that, similar to 
project-based learning, provides for longer-term engagement with a specific topic or task. 
At the end of this process, there is usually a product or a learning artifact that is important 
for the learners and that contributes to the solution of the problem stated at the beginning 
[3,6]. This result is also presented, discussed, and made available for public use. Learning 
with DBL is cyclical, nonlinear, and strongly oriented towards engineering-science design 
processes. The latter distinguishes DBL from project-based learning: The process in DBL 
requires the development and assessment of various prototypes, each of which is adapted 
to the newly identified requirements after testing. The goal is to develop an optimal de-
sign, but not a product that can meet all requirements [6]. DBL also connects more tradi-
tional learning contexts, such as schools and universities, with fields of practice, e.g., start-
ups, companies, or research institutions. This is called trialogical learning, in which stu-
dents, teachers, and experts from the field benefit from each other in developing multidis-
ciplinary knowledge, in addition to soft skills such as communication and project man-
agement skills [19]. DBL is most often associated with the creative design of media prod-
ucts, as their planning and development involves both the learning of new knowledge 
and the acquisition of new skills [8,20]. Many studies to date have investigated how the 
design of digital games and video affects learning outcomes. For example, Ke [9] demon-
strated that the design of digital games positively affects students’ learning outcomes in 
mathematics. Wake et al. [21] provide evidence for historical learning and Dishon and 
Kafai [22] in civic education. Regarding digital video creation, Zahn et al. [23] found pos-
itive effects on knowledge acquisition and understanding towards obesity, and Stevenson 
et al. [11] reported positive effects of a collaborative video project on various skills, e.g., 
ICT skills, dialogic communication, and reflection on teaching and learning processes. 
Orús et al. [10] found similar results, such as a better performance in a final test for a 
video-creating experimental group than for a control group in a marketing course. In ad-
dition, the students in the experimental group were also more satisfied with the course. 
Writing skills can be also improved through digital video making [24]. 

A relatively new technology that is also well suited to be designed by learners in the 
context of DBL is augmented reality (AR) [15,25]. AR allows digital information or objects 
to be superimposed on reality [26]. This application of digital objects occurs at a given 
time and place, and is interactive and geometrically aligned with reality [27]. The digital 
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AR objects can contain different media formats, e.g., videos, audios, 3D models, and in-
teractive simulations, in addition to texts and images [28]. Learners can first create these 
objects and then augment them (i.e., link the digital objects with real objects) using an AR 
studio, e.g., Areeka Studio [29]. This was implemented, for example, in [30]. Learners from 
English classes used smartphones and computers to record short films, photos, and audio 
files during their trip to Scotland and augmented them in class after their return. This 
involved first creating posters with trigger images (i.e., images that were linked to the 
digital objects), which were then scanned with an AR app to reveal the digital objects. The 
posters were then presented to parents at an event, giving them a much more holistic view 
of their children’s Scotland trip. The positive effect of such a DBL project in language 
learning was also found in [31], where students created a multimodal AR museum. Other 
approaches that combined AR and DBL can be found for interior design [25] and the de-
velopment of an AR book in primary education [32]. 

2.2. Potentials of DBL 
The potentials of DBL can be traced back to the basic assumptions of constructivist 

and constructionist learning theories [6,33]. DBL is more effective than traditional learning 
because learners work on real problems in teams and are allowed to pursue their own 
ideas and approaches, which in turn leads to higher engagement and thus better learning 
outcomes [18,34,35]. For example, Yang et al. [34] showed that the creation of course ma-
terials by students can contribute to the acquisition of knowledge, and the creation of 
learning tasks can also positively influence the conceptual understanding of learning con-
tent, as Vreman-de Olde et al. [35] demonstrated for students in vocational education. The 
studies in [7], [36], and [37] also found positive effects of DBL on learning performance. 

In addition to learning, DBL appears to have a particularly positive effect on motiva-
tional and affective factors during learning [38,39]. Kiili [40] showed that the design of 
learning materials in the context of an online game can lead to the experience of flow, and 
in [41], the testing of prototypes was perceived as a very joyful activity. Erol and Kurt [42] 
were able to demonstrate the positive effect of DBL on the motivational experience in a 
posttest and in a delayed posttest. In this study, the experimental group created materials 
with the coding software Scratch and surpassed the control group not only in motivation, 
but also in learning gains. These results were also confirmed in the studies of Topalli and 
Cagiltay [43] and Terrón-López et al. [5]. In the latter study, it was also found that the 
involvement of professional experts was particularly motivating and had a positive effect 
on attitudes towards a future technical profession. LaForce et al. [44] came to the same 
conclusion, stating that problem-based projects can increase interest in a future STEM ca-
reer. Zhang, Markopoulos, and Bekker [39] conducted a systematic review and found that 
DBL can contribute to self-regulated learning and improves self-efficacy among learners. 
Furthermore, DBL has a motivating effect, generates interest, and can arouse curiosity 
about professional topics. 

2.3. Challenges Associated with DBL 
However, in addition to the potential benefits of DBL and other constructivist learn-

ing approaches, researchers expressed doubts about their effectiveness. Analysis of 
Kirschner et al. [16] showed that learning with DBL and related methods is highly com-
plex, and can thus overwhelm learners. Mostly, the necessary knowledge is not available 
to allow complex problems to be solved. Therefore, they recommend scaffolding elements 
in DBL and a reduction in these only after the development of basic knowledge and com-
petences for the treatment of the problem. This is also noted by Hmelo-Silver et al. [45], 
who argue in favor of guided DBL to reveal the possible potentials. Sweller et al. [46] also 
added that problem-solving techniques have to be learned first and not through a con-
structivist teaching approach. 

Vongkulluksn et al. [17] found evidence that the complexity of the DBL approach can 
also influence motivational and affective outcomes in a negative manner. They compared 
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younger and older students learning within a makerspace for one semester and collected 
data on self-efficacy and situational interest at three points in time. Overall, both factors 
were found to be above the median of the scales indicating a positive expression during 
the makerspace instruction. However, a detailed examination of the data showed that 
both self-efficacy and situational interest scores declined among students over the dura-
tion of the semester. This affected the older students more than the younger students. 
Overall, the older students showed significantly lower self-efficacy scores and more neg-
ative emotions over the course of the semester compared to the younger students. 
Vongkulluksn et al. [17] explained the results as students recognizing and reflecting on 
the challenges in addition to their own overambitious goals. Zhang et al. [41] focused on 
emotions during DBL and found overall positive ratings. Here, the detailed results also 
reveal that learners vary in their experiences of emotions during the different stages of the 
design process, including negative feelings. This is also reflected in [39], in which the au-
thors found that DBL can also lead to frustration, boredom, and anger, in addition to the 
more positive emotions of happiness and excitement. 

3. The Present Study 
Building on previous research on DBL, in this study we examined whether younger 

(first-year computer science students, 10–11 years) or older students (experienced com-
puter science students, 12–15 years) benefit more from a guided AR DBL approach. For 
this purpose, we extended the results found in [17] by investigating additional motiva-
tional factors relevant to learning in STEM disciplines and by assessing the influence of 
the approach on learning performance in computer science education. With regard to the 
motivational factors, we applied the model presented in [47], with self-efficacy, self-deter-
mination, intrinsic motivation, and career motivation being relevant components to meas-
ure a student’s motivation to learn in STEM disciplines. Regarding learning performance, 
we investigated learner’s knowledge regarding the components of computer systems and 
their related functionalities. In addition, we contributed to research on AR as an educa-
tional technology by examining the potential of AR from a perspective of learning with 
media instead of the widespread perspective of learning from media [48,49]. Here, we 
provide a rigorous planned instructional design for integrating a guided DBL approach 
in real classroom settings to support a student’s creation of AR artefacts. Our approach 
was implemented from October 2019 to January 2020. As we were also interested in the 
long-term effect of our intervention, we asked the students again in May 2020 to complete 
our questionnaires on learning achievement and motivation towards STEM learning. 

The following research questions are investigated: 
RQ1: Our instructional design for the AR DBL approach is based on previous re-

search, which revealed the problems of constructivist approaches without guidance (e.g., 
[16]). Therefore, our design can be characterized as a guided AR DBL approach, i.e., stu-
dents, teachers, and partners from the professional world work closely together to solve 
the design problem (details in section 4.2). Hence, we ask in RQ1 if both first-year and 
experienced students benefit in terms of learning performance from our guided AR DBL 
approach. 

RQ2: With regard to the motivational effects of our guided AR DBL approach we 
follow the results found in [17]. Therefore, we investigated if the first-year computer sci-
ence students in our study also report higher values for the motivational factors self-effi-
cacy, intrinsic motivation, self-determination, and career motivation than older and more 
experienced students. 

4. Method 
4.1. Participants and Context 
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The study is part of the larger research and development project, PCBuildAR [50], in 
which students, teachers, researchers, and AR development experts collaboratively de-
signed AR-enhanced learning and teaching materials for computer science education. 
Three experienced and technology-knowledgeable teachers from three different Austrian 
schools and their classes were recruited as partners for the one-year project. All three 
schools are designated as so-called “expert schools”, an award given by the Austrian Min-
istry of Education and Research to schools with a high level of expertise in digital teaching 
and learning. All three teachers are male, highly motivated, and also engaged in teacher 
training nationwide. In total, 62 students (42 girls) with an average age of 11.84 years (SD 
= 1.54) participated in the study. Twenty-five students (17 girls) were part of the first-year 
computer science class (Mage = 10.16, SDage = 0.37) and 37 students (25 girls) were part of 
the experienced computer science class (Mage = 12.97, SDage = 0.80). For four months, learn-
ers engaged with their teachers and the AR experts in the different phases of DBL, creating 
media products that were augmented and merged at the end to create the PCBuildAR 
cards for computer science education. The detailed course of this process is presented in 
the next section. 

4.2. Guided DBL for AR Artifact Creation 
The guided DBL instructional design for AR artifact creation consisted of three fully 

planned workshops in which teachers, AR development experts, and educational technol-
ogy researchers from our lab worked together with the students. Each workshop was 
scheduled from 8 a.m. to approximately 1 p.m., which is a traditional school day in Aus-
tria. Between the workshops, the teachers continued working on the project during their 
computer science lessons. The AR experts and researchers prepared the next workshops 
by evaluating students’ ideas and prototype drafts. Our approach is based on the iterative 
design cycle proposed by Burghardt and Hacker [51] (as cited in [6]): 
• Clarifying design specifications and constraints 
• Researching and investigating the problem 
• Generating alternative designs 
• Choosing and justifying the optimal design 
• Developing a prototype 
• Testing and evaluating the design solution 
• Redesigning the solution with modifications 
• Communicating the achievements. 

In the first workshop in October 2019, the driving question for the project was stated: 
How should an augmented reality artifact for learning in computer science education in 
secondary school look? As recommended in the literature, this question is open to various 
solutions and addresses a real-world problem [3]. Next, we gave a short presentation to 
introduce AR technology to the students, because they had little or no previous experience 
with it. Building on this, students tested existing AR materials and evaluated them using 
a quality check. For example, the students liked the 3D models in an AR history textbook, 
but they also reported that there was often a need for more in-depth auditory explanations 
or interaction options such as controls or choices. After discussing their evaluation results, 
students were organized into groups of four to generate alternative designs for AR arti-
facts for learning. For this purpose, we used the future technology workshop method [52], 
which allows learners to collaboratively develop a vison of the AR learning material for 
the future. The results of the workshop were recorded with the help of posters, digital 
presentations, drawings, and videos, and then presented to the entire class. Subsequently, 
the most exciting and promising approaches were selected as a group and transferred into 
a design of the first prototype. 

In December 2019, we held our second workshop in all three project classes. In the 
interim, the first prototype was already created, which included the results from work-
shop one. Workshop two initially started with the opportunity to ask questions about 
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workshop one and the further course of the project, and to give feedback on the course of 
the project thus far.  

Then, the students were allowed to test the first prototype. From a technological per-
spective, the prototype was a marker-based AR product. This means that images act as 
triggers that contain the AR objects. When the trigger images are scanned with an appli-
cation, the AR objects become visible on the device’s display. In our case, it was found in 
the first workshop that the components of a computer were difficult for students to un-
derstand because they were not very exciting and poorly visualized in traditional text-
books. For this reason, students selected trigger images with computer components that 
were linked to three-dimensional AR objects. Students tested the prototype, which at this 
stage consisted of two components with corresponding 3D models, again in the teams 
from workshop one, and evaluated the design with a quality check by assigning points 
from one to four and written comments. Subsequently, there was another panel discussion 
with the entire class, in which the impressions of the prototype testing were communi-
cated verbally. For example, it was noted that the interactive buttons were still missing 
and the information on how the components work should be more accurate. Thus, the 
next step, the redesign of the previous solution, was initiated. First, buttons were added 
to the prototype sketches and their functions defined. Here, we jointly decided that press-
ing the buttons should display the information about the respective computer component. 
What information the various components contain was to be determined by the students. 
To do this, the students again formed groups and disassembled old computers (Figure 1). 
With the help of their smartphones and textbooks, they researched the functions and in-
teraction of the components and made a collage at the end (Figure 2). In addition, students 
created audio, video, and short texts that could be used as AR overlays for the triggers. 
Both teachers and AR experts were on hand to provide support. 

 
Figure 1. Disassembling an old computer to learn about its components. 
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Figure 2. Collage of the computer components investigated after workshop 2. 

The third workshop was held at the end of January 2020. At the beginning, the focus 
was on the testing of prototype two. The trigger images were redesigned in color and 
graphics by the involved team of AR developers and named PCBuildAR cards (Figure 3). 
The buttons requested by the students were integrated and linked to the 3D objects (Fig-
ure 4). Tapping the left button, for example, plays an audio explanation of the compo-
nent’s function within the computer system. The feedback from the students was ex-
tremely positive: they were satisfied with the interactive buttons, the overall design of the 
cards, and the content they had previously developed. It must be noted again that only 
two computer components were completed as AR artifacts; a total of eight were to be 
created. New 3D models were needed for the remaining components. We decided to also 
involve the students in this. This phase of the DBL project took place in a computer lab, 
whereas all other workshops were held in a usual classroom. The AR developers showed 
the students an online tool for 3D modeling. By demonstrating and following along, the 
learners were guided sequentially in the creation of their first model. After a short time, 
many were able to design their own simple 3D representations. The models were saved 
and then linked to trigger images using the Areeka Studio platform [29]. Areeka Studio is 
a freely accessible online tool that allows the creation of the user’s own AR materials. Re-
quired are an image that is predefined as a trigger image and a so-called overlay, in our 
case the 3D objects created by the students. Areeka Studio links the trigger and 3D object 
and, with the help of the free Areeka application, the 3D object can be made visible over 
the trigger image. 

The plan was to hold more workshops on 3D modeling. This was no longer possible 
due to the COVID-19-related school closures shortly after our third workshop. For this 
reason, it is essential to note here that the 3D models in the final PCBuildAR cards were 
created by the AR developers. One workshop was not enough to teach the students the 
necessary skills to design such more complex models.  

Nevertheless, we were able to successfully complete the PCBuildAR project with the 
DBL approach. The finished PCBuildAR cards, also referred to as AR artifacts by us earlier 
in this paper, are freely available as open educational resources to both teachers and learn-
ers [53]. 

 
Figure 3. Example of a PCBuildAR card with a 2D image as a trigger; here, a RAM component is 
shown. 
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Figure 4. PCBuildAR card with superimposed 3D model of the RAM component. 

4.3. Data Collection and Instruments 
Knowledge of computer components and their functionalities were surveyed at three 

time points: at the beginning of the project in October 2019 (prior knowledge), after work-
shop three in January 2020 (time point 1), and in May 2020 (time point 2). Motivational 
values were collected at time points 1 and 2. At the last appointment, schools were still 
closed due to the COVID-19 pandemic, so the questionnaire was completed by students 
during a virtual classroom session.  

Knowledge was assessed with two instruments: a questionnaire developed by the 
project team and an open-ended question. The content of the questionnaire was adapted 
to the topics covered in class and in the workshops, i.e., knowing the functionalities of the 
computer components and understanding how they interact in a running computer sys-
tem. The questionnaire includes four single-choice questions and one multiple-choice 
question, for example “For which component do you pay attention to gigahertz (GHz) 
rate information? —Graphic card, CPU, RAM memory, monitor”. The open-ended ques-
tion was: “What is the purpose of RAM memory in a computer?”. Students answered this 
question in their own words with a short piece of text.  

Motivation to learn computer science was measured through an adapted version of 
the Science Motivation Questionnaire II (SMQ-II) developed by Glynn et al. [47]. We re-
placed the term science with computer science in the questionnaire to survey motivation 
to learn the subject of computer science. This has already been undertaken for other sub-
jects, e.g., chemistry education [54]. The SMQ-II surveys the motivational constructs of 
intrinsic motivation, self-efficacy, self-determination, and career motivation. The intrinsic 
motivation scale measures the extent to which learners find learning computer science 
personally valuable and enjoyable. An example item is “What I learn in computer science 
is relevant for my life”. The self-efficacy scale measures the extent to which learners be-
lieve that they can accomplish computer science-related tasks. An example item is “I am 
confident I will do well on computer science projects”. The self-determination scale 
measures the extent to which students experience control over their learning. An example 
item is “I put enough effort into learning computer science”. The scale career motivation 
surveys the extent to which students learning in computer science is driven by the extrin-
sic motivator to obtain a better job. An example item is “Understanding computer science 
will benefit me in my career”. Each scale contains five items that were answered from 0, 
strongly disagree, to 4, strongly agree. The full questionnaire is available in German and 
English languages, as shown in Appendix A. 

5. Results 
5.1. Scoring, Data Analysis, and Descriptive Statistics 

The five questions from the learning performance questionnaire were each assigned 
one point if correct. All earned points were summed with a maximum of five points to 
represent the learning performance of the students. The open-ended question was inde-
pendently rated by two computer scientists from our lab. However, inter-rater reliability 
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was not satisfying for all three measure points with Kappa values of 0.36 (prior 
knowledge), 0.44 (time point 1), and 0.21 (time point 2). Consequently, we do not include 
the results of the open-ended question in the further analysis.  

The items of the adapted SMQ-II were assigned to their respective scale and reliabil-
ity was tested. Cronbach’s alpha values for each scale can be considered satisfactory across 
time points: intrinsic motivation scale α = 0.87–0.89, self-efficacy scale α = 0.82–0.91, self-
determination scale α = 0.87–0.90, career motivation scale α = 0.91–0.91. The scores from 
the SMQ-II scales were summed, for a maximum of 20 for each scale [47].  

A Shapiro–Wilk test showed that most of the dependent variable’s distributions dif-
fered significantly from the norm; therefore, non-parametric methods were used to ana-
lyze the data. All data were computed in SPSS 27. Effect sizes were interpreted according 
to Cohen [55]. 

Table 1 represents the descriptive statistics of all variables assessed for first-year and 
experienced students. 

Table 1. Descriptive statistics of both groups for all measured variables. 

 First-Year Students 
(N = 25) 

Experienced Students 
(N = 37) 

 M SD M SD 
Prior knowledge 2.20 0.87 3.30 1.24 

     
Time point 1:     

Learning performance 2.88 1.42 2.35 1.06 
Intrinsic motivation 13.72 3.77 13.73 4.91 

Self-efficacy 14.56 3.37 14.11 4.59 
Self-determination 12.44 4.31 12.03 4.89 
Career-motivation 13.12 4.52 12.46 5.27 

     
Time point 2:     

Learning performance 2.88 1.20 3.54 1.54 
Intrinsic motivation 12.28 5.26 14.49 3.60 

Self-efficacy 11.72 6.12 14.97 2.99 
Self-determination 8.76 4.80 11.95 3.43 
Career-motivation 12.08 4.19 12.49 4.61 

5.2. Learning Performance 
To investigate our first research question, we initially checked for differences in prior 

knowledge. As a Mann–Whitney test shows, younger first-year computer science learners 
(mean rank = 20.12) differ significantly from older learners (mean rank = 37.84) in terms 
of prior knowledge, U = 228.00, z = −3.48, p < 0.01. At time point 1, the learning perfor-
mance between the first-year students (mean rank = 35.48) and the experienced students 
(mean rank = 28.81) no longer significantly differs, Mann–Whitney test, U = 363.00, z = 
−1.47, p > 0.05, d = 0.37. In addition, at time point 3, no differences between the two groups 
occur, Mann–Whitney test, first-year students mean rank = 26.82, experienced students 
mean rank = 34.66, U = 345.50, z = −1.72, p > 0.05, d = 0.44. 

Furthermore, a Wilcoxon signed-rank test shows that the first-year students scored 
significantly higher in the learning performance test at time point 1 (Mdn = 3.00) compared 
to their prior knowledge (Mdn = 2.00), z = −2.16, p < 0.05, d = 0.62. This result was also 
found when comparing first-year students’ prior knowledge with the learning perfor-
mance at time point 2 (Mdn = 3.00), Wilcoxon signed-rank test, z = −2.05, p < 0.05, d = 0.59. 

The older and experienced students significantly worsened their performance at time 
point 1 (Mdn = 2.00) compared to their prior knowledge (Mdn = 3.00), Wilcoxon signed-
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rank test, z = −2.98, p < 0.05, d = 0.82. At time point 2, the experienced students improved 
their performance on the learning test again (Mdn = 3.00); however, compared to their 
prior knowledge, this improvement was not significant, Wilcoxon signed-rank test, z = 
−0.54, p > 0.05, d = 0.14. 

5.3. Motivation 
A Mann–Whitney test was used to determine differences between the first-year and 

experienced students for both time points. 
At time point 1, all students showed similar high values for all four motivational 

scales, no significant differences were found for intrinsic motivation (first-year students 
mean rank = 30.66, experienced students mean rank = 32.07, U = 441.50, z = −0.30, p > 0.05, 
d = 0.08), self-efficacy (first-year students mean rank = 31.24, experienced students mean 
rank = 31.68, U = 456.00, z = −0.09, p > 0.05, d = 0.02), self-determination (first-year students 
mean rank = 31.98, experienced students mean rank = 31.18, U = 450.50, z = −0.17, p > 0.05, 
d = 0.04), and career motivation (first-year students mean rank = 32.86, experienced stu-
dents mean rank = 30.58, U = 428.50, z = −0.49, p > 0.05, d = 0.12). 

At time point 2 no significant differences between the first-year (mean rank = 27.54) 
and experienced students (mean rank = 34.18) were found for the intrinsic motivation 
scale (U = 363.50, z = −1.43, p > 0.05, d = 0.37) and the career motivation scale motivation 
(first-year students mean rank = 29.58, experienced students mean rank = 32.80, U = 414.50, 
z = −0.69, p > 0.05, d = 0.18). Significant differences were detected for self-efficacy (first-
year students mean rank = 26.32, experienced students mean rank = 35.00, U = 333.00, z = 
−1.87, p < 0.05 one-tailed, d = 0.49), and self-determination (first-year students mean rank 
= 24.82, experienced students mean rank = 36.01, U = 295.50, z = −2.41, p < 0.05, d = 0.64). 

Regarding the long-term effect of the guided AR DBL approach, the Wilcoxon 
signed-rank test was used to calculate the differences of the motivational values between 
time points 1 and 2 for both groups. For first-year students, no significant decline or in-
crease in intrinsic motivation (time point 1: Mdn = 15.00, time point 2: Mdn = 13.00, z = 
−0.92, p > 0.05, d = 0.26), self-efficacy (time point 1: Mdn = 15.00, time point 2: Mdn = 15.00, 
z = −1.75, p > 0.05, d = 0.50), or career motivation (time point 1: Mdn = 13.00, time point 2: 
Mdn = 13.00, z = −1.01, p > 0.05, d = 0.28) was found. For self-determination, a significant 
decline in first-year students’ scorings was found (time point 1: Mdn = 12.00, time point 2: 
Mdn = 10.00, z = −2.79, p < 0.01, d = 0.83). 

For experienced students, none of the motivation scales significantly declined or in-
creased between time points 1 and 2: intrinsic motivation (time point 1: Mdn = 15.00, time 
point 2: Mdn = 15.00, z = −0.22, p > 0.05, d = 0.06), self-efficacy (time point 1: Mdn = 15.00, 
time point 2: Mdn = 16.00, z = −0.59, p > 0.05, d = 0.15), career motivation (time point 1: 
Mdn = 12.00, time point 2: Mdn = 13.00, z = −0.06, p > 0.05, d = 0.02), and self-determination 
(time point 1: Mdn = 12.00, time point 2: Mdn = 12.00, z = −0.36, p > 0.05, d = 0.09). 

6. Discussion 
The objective of this study was to extend previous findings of DBL when applied in 

real classroom settings and to contribute to the research field of AR, by showing that AR 
can also be looked at from a perspective of learning with media. Therefore, we developed 
a rigorous planned instructional design for students to design their own AR artefacts, and 
collected data, related to the learning performance and motivation to learn in computer 
science, of first-year and experienced students. 

In the first research question, we asked whether first-year and experienced students 
would benefit from our guided AR DBL approach regarding learning. Our results show 
that the first-year students with less prior knowledge significantly improved their learn-
ing performance after the intervention and gained on the experienced students, so that at 
time point 1 there was no longer a difference between the groups. The effect size for the 
improvement was medium. In addition, in the long term, the first-year students signifi-
cantly improved their learning performance compared to their prior knowledge; the effect 
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size was again medium. In comparison to time point 1 (M = 2.88), first-year students 
achieved the same scores at time point 2 (M = 2.88). Hence, we can conclude that the 
guided AR DBL approach helped the first-year students with little prior knowledge to 
improve their learning performance. This is in line with previous research that indicates 
that guided learner-centered instructional approaches work for students with low prior 
knowledge [45,56]. In contrast, the experienced students’ performance significantly wors-
ened at time point 1 (M = 2.46) compared to their prior knowledge (M = 3.25); the effect 
size was medium. One explanation for this effect might be that the guided instructional 
design does not allowed the experienced students to align their prior knowledge with the 
newly learned information, resulting in a cognitive conflict [57]. This conflict triggers pro-
cesses in learners that are cognitively highly demanding: existing mental models have to 
be reconsidered and the new information has to be reconciled with existing knowledge. If 
these processes are still in progress during a performance assessment, cognitive overload 
can occur, resulting in poorer learning performance [57]. The performance results of the 
experienced students at time point 2 (M = 3.50) can be interpreted as evidence for this 
explanation. The conflict processes were completed during performance measurement at 
time point 2, and the learners were able to retrieve their previous performance. However, 
it must also be noted that neither a significant improvement compared to prior knowledge 
(small effect size) was found, nor did a significant difference between the experienced and 
the first-year students learning performance reoccur. Therefore, we conclude that the 
guided AR DBL approach was not an effective instructional method for the more experi-
enced students with high prior knowledge, which is in line with research on the expertise 
reversal effect [57]. 

Our second research question is based on previous findings reported in [17]; hence, 
we assumed that the motivation of the younger first-year students to learn computer sci-
ence would be higher compared to the experienced students after the AR DBL interven-
tion. Descriptive statistics support this assumption for time point 1, where first-year stu-
dents reported higher values for all four motivation scales. However, the differences were 
not found to be statistically significant, and the effect sizes were small. Hence, we can 
summarize that the guided AR DBL approach may have helped the experienced students 
to not overestimate their abilities, which was identified in [17] as a possible factor for the 
motivational decline. 

More interestingly, at time point 2, significant differences with medium effect sizes 
were found for intrinsic motivation, self-efficacy, and self-determination, and not for ca-
reer motivation. Here, the experienced students reported higher values four months after 
the AR DBL intervention, with no decline compared to the results at time point 1. On the 
contrary, first-year students’ intrinsic motivation, self-efficacy, and career motivation val-
ues decreased (not significantly) with small to medium effect sizes. The self-determination 
scale values even diminished significantly, and the effect size was large. With regard to 
the experienced students, the results are promising, because otherwise the motivation to 
learn in STEM-related disciplines gradually drops [58]. In our case, the guided AR DBL 
approach may have contributed to maintaining high motivation in the longer term and 
stimulated a sustained interest in computer science education. This is line with previous 
research on the motivational effect of DBL for STEM-learning [7,39,40]. Regarding the 
younger first-year students, a positive long-term effect of the guided AR DBL approach is 
not as clear as that of experienced students. Particularly striking is the significant drop in 
scores for self-determination (large effect). The intervention was perceived by the first-
year students as autonomy-enhancing, whereas the period after the intervention, when 
“traditional” teaching was resumed, undermined this autonomy again. Self-determina-
tion is an essential factor in human motivation that correlates with the other motivational 
factors measured in this study [47], especially the sense of intrinsic motivation. In the self-
determination theory of motivation [59], the experience of autonomy is a central factor of 
intrinsic motivation, in addition to the experience of competence and relatedness. The 
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guided AR DBL approach presented here contributed to the experience of self-determina-
tion, so implementation of this design, especially with younger students, can be strongly 
recommended. 

7. Limitations and Future Research 
The results of this study are based on the specifics of our project, such as the highly 

committed teachers and their selection of the classes. Therefore, a generalization of the 
results is not possible. In addition, our implementation is a field study under real class-
room conditions, rather a controlled randomized experiment. For practice, however, stud-
ies such as the one conducted here may be helpful because they provide a blueprint for 
how DBL can be implemented in school teaching. Another limitation concerns the sole 
focus on the DBL use, which was separated from what happened before and after this 
teaching approach. It would be exciting to investigate the point at which the learning of 
new content DBL would be particularly well suited. For example, it is reasonable to as-
sume that content pre-training could have a positive impact on motivational factors. Such 
a design could then be compared to a class that was not prepared in terms of content. With 
regard to our findings, future studies should further investigate the balance between guid-
ance and autonomy or should identify the optimal point in time during a DBL approach 
to reduce the supportive guidance. Additionally, the small sample size should be men-
tioned as a limitation of a pure quantitative analysis. Future studies might apply design-
oriented mixed-method approaches to gain more detailed insights into how learning hap-
pens when using DBL for AR creation. 

8. Conclusions and Implications 
Based on the results of this study, we can conclude that our guided AR DBL approach 

for computer science education proved to be more effective in terms of learning perfor-
mance for younger first-year students with less prior knowledge than for more experi-
enced students with higher prior knowledge. For experienced students, a more balanced 
design of guidance and autonomy is recommended. Then, these students can use their 
knowledge base in a more effective way, and thus prevent a cognitive conflict. 

In terms of motivation to learn computer science, the results are promising for expe-
rienced students, because motivation remained high in the longer term. For the first-year 
students, a long-term effect was not as clear, but we found evidence that the guided AR 
DBL approach contributed to student’s motivation to learn computer science after the in-
tervention. This is also true for the older and more experienced students. 

For teaching practice, we can recommend the guided AR DBL design presented here, 
especially for beginners, because they will benefit from the structure. When used with 
older students, it is recommended to allow more freedom so that cognitive conflict is 
avoided, and AR design is seen as an exciting challenge. 

Author Contributions: Conceptualization, J.B.; methodology, J.B.; validation, J.B. and M.K.; formal 
analysis, J.B.; investigation, J.B.; resources, M.K.; data curation, J.B.; writing—original draft prepa-
ration, J.B. and M.K.; writing—review and editing, J.B. and M.K.; visualization, J.B.; supervision, 
M.K.; project administration, J.B.; funding acquisition, J.B. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was funded by the “Innovation Foundation for Education” (Die Innova-
tionsstiftung für Bildung) and the “Austrian Exchange Service (OeAD) as part of the call for pro-
posals for “Digital Teaching and Learning Materials 2019/20—project number DLL−2_72”. 

Institutional Review Board Statement: The study was conducted according to the guidelines of the 
Declaration of Helsinki. Ethical review and approval were waived for this study because the project 
was a cooperation of researchers, teachers, students, external experts, and the school management. 
All participants agreed to participate before the project started. 



Multimodal Technol. Interact. 2021, 5, 41 13 of 16 
 

 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. All data was collected fully anonymously with no effect on grading or other school relevant 
assessments. 

Data Availability Statement: Data is available by contacting the first author of this study. 

Acknowledgments: The authors thank the teachers Klaus-Jürgen Spätauf, Philipp Stangl and Klaus 
Zanetti, and their students from the three schools involved, in addition to the school management, 
for their participation in the project. We also thank the employees of Areeka GmbH, especially 
Arkadi Jeghiazaryan, for their support and assistance in building the application, and for the 
codesign and implementation of the workshops. We would also like to thank our colleagues at the 
Learning Lab for the constructive exchange and feedback. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 
Adapted version of the Science Motivation Questionnaire II (SQM-II) for the usage 

in technology or computer science education. 

Intrinsische Motivation Intrinsic Motivation 
Was ich im Technologie-/Informatikunterricht lerne, ist für mein 
Leben wichtig. 

What I learn in technology education is relevant 
for my life. 

Der Technologie-/Informatikunterricht ist interessant. Technology education is interesting. 
Das Lernen von Technologie-/Informatik-Inhalten macht mein 
Leben sinnvoller. 

Learning about technology makes my life more 
meaningful. 

Ich bin neugierig zu erfahren, was es in der Welt der 
Technologie/Informatik zu entdecken gibt. I am curious about discoveries in technology. 

Es gefällt mir, technologische und informatische Inhalte zu erlernen. I enjoy learning about technology. 
Selbstwirksamkeit Self-Efficacy 
Ich bin zuversichtlich, dass ich eine gute Leistung im Technologie-
/Informatikunterricht zeigen werde. 

I am confident I will do well in technology 
education. 

Ich bin zuversichtlich, dass ich bei Technologie-/Informatik-
Projekten gut abschneide. 

I am confident I will do well on technology 
projects. 

Ich glaube, dass ich die inhaltlichen und praktischen 
Anforderungen im Technologie-/Informatikunterricht meistern 
kann. 

I believe I can master technology knowledge and 
skills. 

Ich glaube, ich kann mich bei technologischen und informatischen 
Themen verbessern. I believe I can improve in technology education. 

Ich bin sicher, dass ich die Inhalte im Technologie-
/Informatikunterricht verstehen kann. 

I am sure I can understand technology education 
content. 

Selbstbestimmung Self-Determination 
Ich wende genügend Energie für das Lernen im Technologie-
/Informatikunterricht auf. I put enough effort into technology learning. 

Ich verwende Strategien, die mir ein gutes Lernen im Technologie-
/Informatikunterricht ermöglichen. 

I use strategies to learn well in technology 
education. 

Ich wende viel Zeit für das Lernen im Technologie-
/Informatikunterricht auf. I spend a lot of time learning technology. 

Ich beschäftige mich auch außerhalb der Schule mit Technologie 
und Informatik. I also engage with technology outside of classes. 

Ich arbeite intensiv, um die Inhalte des Technologie-
/Informatikunterrichts zu verstehen. 

I study hard to understand technology. 

Karriereaussichten Career Motivation 
Das Lernen im Technologie-/Informatikunterricht wird mir helfen, 
später eine gute Stelle zu finden. 

Technology education will help me get a good 
job. 
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Kenntnisse aus dem Technologie-/Informatikunterricht werden mir 
einen Karrierevorteil verschaffen. 

Knowing technology will give me a career 
advantage. 

Technologie und Informatik zu verstehen, wird für meine Karriere 
nützlich sein. 

Understanding technology will benefit me in my 
career. 

Meine Berufslaufbahn wird auch mit Technologie/Informatik zu tun 
haben. 

My career will involve technology. 

Ich werde in meiner Karriere die Fähigkeit, mit 
Technologie/Informatik Probleme zu lösen, brauchen. 

I will use technology-related problem-solving 
skills in my career. 

Note. Original SQM-II © 2021 Shawn M. Glynn, University of Georgia, USA. Available under https://coe.uga.edu/as-
sets/downloads/mse/smqii-glynn.pdf (last access 15 May 2021). 
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